Jacobi multipliers and Hamel’s formalism

نویسندگان

چکیده

Abstract In this work we establish the relation between Jacobi last multiplier, which is a geometrical tool in solution of problems mechanics and that provides Lagrangian descriptions constants motion for second-order ordinary differential equations, nonholonomic where dynamics determined by Hamel’s equations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metafluid dynamics and Hamilton-Jacobi formalism

Metafluid dynamics was investigated within Hamilton-Jacobi formalism and the existence of the hidden gauge symmetry was analyzed. The obtained results are in agreement with those of Faddeev-Jackiw approach. PACS:11.10.Ef,03.40.Gc

متن کامل

2D-gravity and the Hamilton-Jacobi formalism

Hamilton-Jacobi formalism is used to study 2D-gravity and its SL(2, R) hidden symmetry. If the contribution of the surface term is considered the obtained results coincide with those given by the Dirac and Faddeev-Jackiw approaches. On leave of absence from Institute of Space Sciences, P.O BOX, MG-23, R 76900 Magurele-Bucharest, Romania, E-mail: [email protected] E-Mail: [email protected]...

متن کامل

Reparametrization invariance and Hamilton-Jacobi formalism

Systems invariant under the reparametrization of time were treated as constrained systems within Hamilton-Jacobi formalism. After imposing the integrability conditions the time-dependent Schrödinger equation was obtained. Three examples are investigated in details. PACS numbers: 11.10.Ef. Lagrangian and Hamiltonian approach

متن کامل

Surface terms, angular momentum and Hamilton - Jacobi formalism

Quadratic Lagrangians are introduced adding surface terms to a free particle Lagrangian. Geodesic equations are used in the context of the Hamilton-Jacobi formulation of constrained sysytem. Manifold structure induced by the quadratic Lagrangian is investigated.

متن کامل

Shape Invariance and the Quantum Hamilton-Jacobi formalism - II

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. In a previous paper [1], it was shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/abf2ed